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What is MRI?

• A non-invasive medial imaging to provide high quality 

images of the inside of patient body. 

• Based on the principles of Nuclear Magnetic Resonance 

(NMR), especially the NMR signal of hydrogen nuclei.

• Strong magnetic field and gradient field are required to 

polarize and encode the frequency of MR signals. 

• Radiofrequency transmitter and receiver coils are used to 

initiate and measure the MR signals for imaging. 
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Source: www.geheathcare.com
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MRI market
(2015 estimate)

MRI Market: Large and Growing

• Annual production: about 4,000 scanners

• About 80 million MRI exams per year worldwide

• Superconducting MRI: >75% of the installed base

• USA and Japan: about one MRI scanner per 30,000 population

• Increasing MRI sales in developing countries including superconducting scanners

• MRI: the largest application of Superconductivity and Helium!
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More than 55,000 MRI units of different types are installed worldwide
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Superconducting-magnet MRI
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Siemens SkyraGE SIGNA Premier Philips Ingenia

Examples of 3 tesla wide-bore systems

Advantages
• High image quality
• Short scan time, high throughput
• Well-controlled stray magnetic field
• Competitive life-cycle cost

Disadvantages
• High purchase / installation cost
• Expensive service contracts
• Requires liquid helium for refrigeration
• May quench: need in helium refill

More than 90% are whole-body scanners (75% 1.5T, 25% 3T) 
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Types of MRI magnets - Shape

Cylindrical magnets: >95% of 
superconducting  scanners Open magnet

Mobile MRI
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Extremity scanner
GE Optima 430s

MRT: 
MRI in 

operating room

0.5 T Signa SP 
(GE, 1995)

1 tesla Panorama (Philips)

0.7 tesla Signa (GE)

GE SIGNA Premier 3T 
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Types of superconducting MRI – Field strength

• Low Field cylindrical magnets
(1.0 tesla or less)

– Insufficient image quality

– Insufficient price advantage

– 2005: Production stopped
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• Higher-field commercial magnets

– 1.5 T and 3 T whole-body magnets constitute more than 95% of 
superconducting MRI magnets

– 1.5 T is the best compromise between cost and performance 

– 3 tesla magnets: about 25% market

• Ultra-high field

– 7 tesla to 11.7 tesla magnets

– Limited to few research clinics, about 70 units installed worldwide

1980s 1990s 2000s 2010s 2020s

> 3 tesla Do not exist Do not exist Ultra-high 

field

Ultra-high 

field

Ultra-high 

field

3 tesla Do not exist Ultra-high 

field

High-field Standard Standard

1.5 tesla High-field High-field Standard Standard Standard

1.0 tesla High-field Standard Production 

stopped

Not produced Not produced

0.5 tesla Standard Low field Production 

stopped

Not produced Not produced
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Requirements to MRI magnets

• Image Quality  →

• Total cost of ownership     →

• Installation & service         →

• Further customer needs    →

– Magnetic field strength (1.5 tesla or higher)

– Field uniformity in large volume (45-50 cm)

– Field stability

– Low initial cost

– Low operational costs (He and kWh)

– Light weight, compact size, smaller footprint

– Fast installation/adjustment

– Service at field

– Safety (5 ga line, standards)

– Reliable (maximum uptime)

– High throughput (maximize revenues)

– Compact/Accessible

– Patient friendly (wide/open)

Commercial magnet design is always a trade-off
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Field uniformity and stability

• Design Uniformity: 10 parts-per-million (ppm) in 45~50 cm diameter volume
o Multiple-coil configuration

• Field decay:
o Short-term decay: 1 ppb during sequence (EMI, vibration)

o Long-term decay: less than 0.1 ppm/hour on average, less than 0.1% per year

11

Region of interest
Field-of-view (FOW)

Bucking coils

Main coils

Passive shims

Cryocooler
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Shielding

• Magnetic field outside of the scanning suite shall be less than 5 

gauss (industry standard)

• Types of shielding

– Active shielding: Use superconducting coils of opposite direction. Cost-

effective, light weight – standard in commercial MRI

– Passive shielding
o Iron attached to cryostat

o Wall shielding

• Typical 5-gauss line
– Measured from the magnet center

– 1.5 T magnets: ~2.5 m X 4 m (R X Z)

– 3 T magnets: ~3 m X 5 m 

12
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Refrigeration

1980s 1990s 2000-10s

Technology Nitrogen 

shield

GM 

cryocooler

ZBO

LHe boil off, 

cc/hr

0.4 0.1 → 0.03 Zero

LHe refill 

period

4 months 1 year →

4 years

Typically, no 

refill

LN refill 

period

1-2 weeks Not used Not used

Principal schematic of ZBO refrigeration

• In 2000s, zero-boil-off (ZBO), or better, zero-

helium loss refrigeration became standard in 

commercial MRI

• ZBO technology uses cryocooler to re-

condense helium gas inside the cryostat ➔

No need in helium refill

• Elimination of one thermal shield, more 

compact magnet design

• Disadvantages of ZBO:
o Higher refrigeration cost

o Higher power consumption

Progress in MRI refrigeration technology

13
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Components of MRI magnet

15

Y. Lvovsky, W. Stautner and T. Wang - “Novel 
technologies and configurations of superconducting 
magnets for MRI”, Superconductor Science and 
Technology, 26 p. 1-71 (2013)
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Unique in Superconducting MRI Magnets

• High field homogeneity
– Multi-coil configuration

– Precise coil positions

• Persistent operation
– Superconducting joints

– Superconducting switch

– Passive quench protection, target no external discharge

• Minimized stray field
– Shielding coils with reversed polarity

• Reliable operation at customer sites (hospitals)

• Price-driven: installation and life cycle

16
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High-level Magnet Design Process
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B0 field, fringe field, field homogeneity, magnet size & cost

Number of coils, wire-specs, coil peak field, operating current, 

magnet stack-up & coil envelope

Ic (B), wire size, insulation type, filament, RRR, piece length 

Define coils size, turns/layers, spacing, Io/Ic ratio

Quench protection analysis

Field sensitivity analysis and shimming design study

Updated coil geometry/layout, field drift calculation, moving metal 

compensation circuit, leads/switch design, coil cold-to-warm dimensions. 

Coil and former stress analysis, thermal analysis, cryostat design

Coil/former assembly process, leads/switch/joint processes, 

instrumentation, test plan 

Design input

Coil scoping

SC wire specs

EM Optimization

Quench 

protection

Shimming 

study

Detailed EM design

ME design & analysis

MFG process dev.
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From long to short magnets
standard multi-coil configuration for 1.5 T magnets

Length 180 cm 145 cm 133 cm 130 cm

FOV 33 cm 45 cm 45 cm 45 cm

# coils 6 8 8 10

Bp 2.3 3.8 5.1 5.4

kAmp-km 4.8 4.6 4.8 5.3

➢ Assumption: All magnets have the same IR and OR, same current, conductor and stray field – all 
typical for 1.5 T magnets

➢ Multi-coil configuration 
• Six-coil design: can not deliver uniformity 
• Short magnets: stray field 

➢ Conductor volume is within +/-10% for the whole range of lengths 
… but its price depends on Bp and increases for short magnets

Longer Shorter
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Shimming

Improve uniformity from 500~1000 ppm in magnet as-

built to 10 ppm

• Passive shimming

o Precisely-positioned pieces of iron in the 

warm bore. Improves overall uniformity 

(not individual harmonics)

o Lowest cost option

o Cons: Temperature drift

19

• Active superconducting shimming.

o Adjustable. Trade off convenience vs performance. 

o Cons: Higher cost. Interactions with magnet

• Resistive shims to improve uniformity in a sweet spot

o Compensates effects of human body. Adjustable for individual patients

o Cons: Low strength. Time-consuming shimming. Interactions with magnet.
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Spherical Harmonics 

20

Actual magnetic field distribution on a 

sphere can be decomposed into a set of 

orthogonal spherical harmonics

(0,0)

(1,1)(1,0)

(2,0) (2,2)

(3,0)

(4,0)

(3,3)

(4,4)

Shimming is achieved by compensating different B field 

harmonics by shimming coils or passive iron shims. 

https://en.wikipedia.org/wiki/File:Rotating_spherical_harmonics.gif
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Field Stability

LeadLead

Cryostat

Power supply

Magnet

Magnet ramp mode

Persistent mode

Options:
1. Driven operation

• Expensive driver, permanently installed

• Lead losses

2. Persistent operation: average decay <0.1 ppm/hr

• Typical MRI/NMR configuration

• Lower cost. Better performance

• Requires very low circuit resistance

• Retractable leads

• Risk: unstable SC components

Driven magnet Persistent magnet

Htr
OFF

LeadLead

Cryostat

SC switch closed

Magnet

LeadLead

Cryostat

SC switch open

Power Supply

Magnet

Htr
ON
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Persistent Magnet Operation

Decay in ppm/hr

E is stored energy [MJ]

I is magnet current [A]
L is magnet inductance [A]
R is magnet resistance [ohm]

Typical parameters for 1.5 T whole-body MRI magnets
• Decay = 0.1 ppm/hr
• E = 3 MJ ➔

• I = 500 Amp

Total circuit:
Rc < 7E-10 ohm

Field decay mechanisms:
• Resistance of joints
• Decay in conductor 

𝐵 = 𝐵0 1 − 𝑒−
𝑡𝑅
𝐿

𝐿 = 2𝐸/𝐼2

De𝑐𝑎𝑦 = 1 − 𝑒−
3600𝑅𝐼2

2𝐸

R<
2 𝐷𝑒𝑐𝑎𝑦∗𝐸

3600∗𝐼2
Max circuit resistance 
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Superconducting Joints

US Pat. 8,315,680 
(Le Feuvre & Simpkins, Siemens, 2012)

• For use in non-helium bath magnet

• Matrix material etched off

• Filaments twisted

• Wrapped around an insulated, cryogen tube

• Placed in cup with Wood’s metal

US Pat. 4,894,906  (Yuchi Huang, 1990)

• Matrix etched off

• No twisting 

• Filaments inserted in bimetallic tube

• Superconductor on ID of tube

• Tube crimped,  filled with solder

Etched filaments
Multifilament 
conductor 

Crimp filaments Fill with solder

Challenges (NbTi joints)

➢ Target resistance <10-11 ohm per joint, 
lower for low-current magnets

➢ Even distribution of current in filaments

➢ Testing in production environment

➢ Minimize field on joints
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Conductor Resistance

I – V curve (best fit) V/Vc = (I/Ic)
N

Material N-value

NbTi ~50 @ 4 tesla 

>40 @ <7 tesla 

>30 above 7 tesla

MgB2 ~30 at zero field

~20 above 0.5 tesla 

HTS ~30 at zero field

~20 above 0.4 tesla

Typical N-values
• Stable and predictable in LTS
• HTS:

o Depend on field and orientation
o Manufacturing method
o Significant variability

50% reduction of N-value: 
need to reduce I/Ic by 30%
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Superconducting Switch

Design Requirements

➢ Maximize switch resistance and 
minimize joule heating

Q = ൗV2

Rs
𝑡

➢ Minimize inductance

➢ Fast ON-OFF and OFF-ON transitions

➢ No spontaneous quenches

➢ High-current operation

US Pat. 5,649,353 (L. Salasoo et al, 1997)

US Pat. 5,093,645 (B.Dorri et al, GE, 1992)
• Switch for conduction-cooled magnet
• Bifilar-winding, epoxy-impregnated
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Quench Protection

NbTi critical surface

What is quench? 
Superconductor becomes resistive when it exceeds 
the (B, J, T) critical surface.

Consequence of a quench
• Out of MRI operation, down-time

• Loss of helium 

• Risks of over-heating, over-voltage, 

over-stress

• Risk to magnet structures

• Stray magnetic field blooming

• Field homogeneity/re-shimming

MRI quench protection: 
• Passive detection: no external circuit
• Heaters:

o Resistive: use magnet energy
o Inductive heating (ancillary)

• Energy released inside cryostat

Quench protection includes:
1. Detection of quench occurs
2. Protection (heater activation)
3. All coils quench
4. Current decays
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Quench Protection 

US Pat. 7,196,883 (M. Tsuchiya et al, 
Hitachi, 2007)

• Detection controlled by diode 
threshold voltage

• Extensive and fast heater activation

• Voltage clamping

heaters

Coil 4

Coil 2

Coil 3

Coil 1

shunts
Coil 
quenched

Heaters 
ON

Quench 
detected

All coils fully 
resistive

Quench currents
example

• MIIT approach

න
To

Tmax Cp(T)

(𝑇)
𝑑𝑇 = න

0

t0
J(t)2 𝑑𝑡

• Need fast detection and heater activation 
and fast normal zone propagation
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Magnet Support Structure

Coils supported by structures and suspension to vacuum vessel

Element Function

1 Main coils Create main homogeneous field

2 Bucking coils Stray field control

3 Structure (coil form) Support of inter-coil forces

4 Active shims (CC) Manuf. tolerance compensation 
(lower orders)

5 Passive shims Manuf. tolerance compensation

6 B0 coil Moving metal compensation

7 Main switch Persistent circuit (open during ramp)

8 Quench switch Quench spreading between coils

9 CC switches Enable current input in CC

10 Quench protection 
elements

Coils voltage and temperature control 
during quench

11 Helium vessel Magnet operational environment

12 Thermal shield Control of cold-mass thermal load

13 Vacuum vessel Control of thermal load

14 Suspension Mech. support of cold-mass & shield

15 Main leads Current input in magnet

16 Shim lead Current input in active shims (CC)

17 Instrumentation Monitor main magnet parameters

18 Cold-head w/ re-
condenser

Cryostat heat loads management with 
zero boil-off

19 Gradient interfaces Mechanical support and acoustic IF
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Coil Support Structure

• Function
– Supports coil during winding

– Supports coil-coil interaction force

• Design Considerations
– Strong structure support

– Light weight

– Low cost

• Material
– Aluminum

– Stainless steel

– GFRP
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Cold-mass Suspension

• Function
– Suspend coil mass to vacuum vessel

– For regular operation + transportation

– Minimize heat leak to cold-mass

• Design Considerations
– Strong

– Low thermal conductivity

– Small Cross-sectional area

– Long length

• Material
– GFRP

– CFRP

– Stainless steel

– Titanium rods
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Suspensions

Source: Zhang, et. al., IEEE Trans. Appl. Supercond., V25, #2, 2015

Axial suspension 

rods

Radial suspension 

rods



Presentation to the School of Superconductivity 
held in Mexico, Nov. 13, 2021

Agenda

33

➢ Introduction 

➢ Requirements to MRI magnet

➢ Electromagnetic design

➢ Structural design

➢ Cryogenic system

➢ Conductor 

➢ Conclusion. Q&A



Presentation to the School of Superconductivity 
held in Mexico, Nov. 13, 2021 34

Magnet Cryogenic System

Helium vessel, thermal shield, vacuum vessel, and cryo-cooler

7, 8

9 10

123
4

5

6

11

12

13

14

15
16

17

18

19

Element Function

1 Main coils Create main homogeneous field

2 Bucking coils Stray field control

3 Structure (coilform) Support of intercoil forces

4 Active shims (CC) Manuf. tolerance compensation (lower 
orders)

5 Passive shims Manuf. tolerance compensation

6 B0 coil Moving metal compensation

7 Main switch Persistent circuit (open during ramp)

8 Quench switch Quench spreading between coils

9 CC switches Enable current input in CC

10 Quench protection 
elements

Coils voltage and temperature control 
during quench

11 Helium vessel Magnet operational environment

12 Thermal shield Control of cold-mass thermal load

13 Vacuum vessel Control of thermal load

14 Suspension Mech. support of coldmass & shield

15 Main leads Current input in magnet

16 Shim lead Current input in active shims (CC)

17 Instrumentation Monitor main magnet parameters

18 Cold-head w/ re-
condenser

Cryostat heat loads management with 
zero helium boil-off

19 Gradient interfaces Mechanical support and acoustic IF
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Primary Goal
• Reduce heat load to the cold-mass (liquid helium temperature)
• Reduce or eliminate LHe boil off

35

Cryocooler/cold-head

1st stage coupled 
to thermal shield 
~40-50K

2nd stage 
coupled to He 
re-condenser 
~4K

He Vessel & 
magnet coils
(Cold-Mass)Thermal 

shields

Vacuum 
vessels

Warm 
bore

Cryostat keeps superconductors cool

Magnet Cryostat

Three types of heat transfer
• Convection
• Conduction
• Radiation

Reduce heat load
• Convection→ vacuum
• Conduction→ suspension w/ 

composite materials
• Radiation→ thermal shield + 

Multi-layer-insulation (MLI)
Cold Mass

In Helium vessel

MLI

Provides cooling
• Cryo-cooler/cold-head
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Vacuum Vessel

• Function
– Holds vacuum

– Provides structural support

• Design Considerations
– Strong

– Low cost

• Material
– Stainless steel

– Aluminum

– Steel

– Composites
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Thermal Shield

• Function
– Blocks radiation heat

– Provides thermal stationing

• Design Considerations
– Operating temperature 40-60K

– Connected to 1st stage of cold-head

– Highly thermal conductive

• Material
– Aluminum, various grades

– Copper



Presentation to the School of Superconductivity 
held in Mexico, Nov. 13, 2021 38

Multilayer Insulation (MLI)

• Invented by Sir Dewar in 1900

• Developed in space industry in 1950’s

• Thin plastic sheets (Mylar or Kapton)

• Metalized on both sides (Al or Ag)

• Separated by thin cloth meshes or scrim

• Loosely packed between vacuum vessel 
and thermal shield

• Blocks 90-95% of radiation heat

• Typical number of layers 20 – 40

Source: PRWeb
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Cryo-cooler

Components of a cryo-cooler system

– Cold-head

– Compressor

– Flex helium lines

Cooling power
1-1.5 W @ 4 K to cold-mass
~ 40W@ 40 K to thermal shield

Design Considerations
GM or Pulse-type coolers
Cold-head orientation (PT for vertical only)
Maintenance and service

Source: Xu et. al., Cryocoolers 16, 2011 Source: Sumitomo (SHI)

1st stage

2nd stage

Compressor

Flexline
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LTS conductor - NbTi

MRI industry uses
• 3,000 to 5,000 tons/yr (including copper)

• 65%-75% of all NbTi conductor (by weight) 

• More than 50% of NbTi alloy

Why NbTi

• Mature, manufacturing-friendly, optimized for MRI

• Mechanically very strong

• Available in long lengths with guaranteed properties

• Lowest-cost superconducting material

• Con: low critical temperature Tc
o Expensive refrigeration
o Low stability: may quench
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Two conductor types

Wire-in-channel (WIC) Monolith

Shape Rectangular Round or rectangular

Size (typical) >1 mm height 0.5 mm to 2 mm

Insulation (typical)

Break-down voltage

Polyester braid, 150 um thick

~500 V

Formvar, 40 um thick

>2,000 V

Cu : NbTi range 5 : 1 to 20 : 1 0.8 : 1 to 8 : 1

Current density in coils Lower Higher (1.5 – 2x)

Impact on magnet • Heavier

• Dry-wound and/or VPI

• Low thermal conductivity: not 

fit for cryogen-free magnets

• Lower weight, more compact

• Dry-wind or wet wind

• Fit for conduction-cooled 

magnets

NbTi Conductor for MRI
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• Higher-Tc materials may help to reduce 

installation and life-cycle cost:
– Liquid-cryogen-free, quench-free system

– Minimize on-site construction

• MgB2 offers some potential for use in MRI

Trade-off conductor cost vs refrigeration cost

Superconductors beyond NbTi

MgB2, HTS advantages
Challenges of MgB2 and HTS 
application in MRI

➢ Design
• Persistent operation (low N-value, 

SC joint)
• Quench protection
• High price
• Low engineering current density
• Short piece lengths

➢ Manufacturing
• Winding technology
• SC Joints
• Defect detection
• Conductor breakage
• Magnet yield
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Conclusions

44

• Commercial MRI magnets have reached maturity

– Efficient, well-integrated magnet design

– Still, there are opportunities for improvement and growth

• Superconducting MRI scanners

– The largest commercial application of superconductivity

– The highest performance 

– Competitive life-cycle cost

• NbTi is the conductor of choice for commercial MRI magnets
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Thank you

45

Email: anbo.wu3@ge.com


