School of Superconductivity held in Mexico

≡ Remembering the Past *≡ ≡* Looking into the Future *≡*

Superconducting Magnets for MRI

Anbo Wu, Michael Parizh General Electric – Global Research Center Niskayuna, NY, USA

) imagination at work

Material shall NOT to be copied, reproduced, or distributed in any form without prior written permission from authors

Agenda

- Introduction:
 - What is MRI
 - MRI market
 - Types of MRI magnets: field, shape, purpose
- Requirements to MRI magnet
- Electromagnetic design
- Structural design
- Cryogenic system
- Conductor
- Conclusion. Q&A

What is MRI?

- A non-invasive medial imaging to provide high quality images of the inside of patient body.
- Based on the principles of Nuclear Magnetic Resonance (NMR), especially the NMR signal of hydrogen nuclei.
- Strong magnetic field and gradient field are required to polarize and encode the frequency of MR signals.

 Radiofrequency transmitter and receiver coils are used to initiate and measure the MR signals for imaging.

Source: www.geheathcare.com

MRI Market: Large and Growing

More than 55,000 MRI units of different types are installed worldwide

- Annual production: about 4,000 scanners ۲
- About 80 million MRI exams per year worldwide
- Superconducting MRI: >75% of the installed base
- USA and Japan: about one MRI scanner per 30,000 population
- Increasing MRI sales in developing countries including superconducting scanners
- MRI: the largest application of Superconductivity and Helium!

Superconducting-magnet MRI

Examples of 3 tesla wide-bore systems

GE SIGNA Premier

Philips Ingenia

Siemens Skyra

Advantages

- High image quality
- Short scan time, high throughput
- Well-controlled stray magnetic field
- Competitive life-cycle cost

Disadvantages

- High purchase / installation cost
- Expensive service contracts
- Requires liquid helium for refrigeration
- May quench: need in helium refill

More than 90% are whole-body scanners (75% 1.5T, 25% 3T)

Types of MRI magnets - Shape

Cylindrical magnets: >95% of superconducting scanners

GE SIGNA Premier 3T

1 tesla Panorama (Philips)

MRT: MRI in operating room

0.5 T Signa SP (GE, 1995)

Mobile MRI

0.7 tesla Signa (GE)

Extremity scanner GE Optima 430s

Types of superconducting MRI – Field strength

> 3 tesla

3 tesla

1.5 tesla

1.0 tesla

0.5 tesla

1980s

Do not exist

Do not exist

Hiah-field

High-field

Standard,

1990s

Do not exist

Ultra-high

field

High-field

Standard

Low field

2010s

Ultra-high

field

Standard

Standard

Not produced

Not produced

2000s

Ultra-high

field

High-field

Standard

Production

stopped

Production

stopped

2020s

Ultra-high

field

Standard

Standard

Not produced

Not produced

- Low Field cylindrical magnets (1.0 tesla or less)
 - Insufficient image quality
 - Insufficient price advantage
 - 2005: Production stopped
- Higher-field commercial magnets
 - 1.5 T and 3 T whole-body magnets constitute more than 95% of superconducting MRI magnets
 - 1.5 T is the best compromise between cost and performance
 - 3 tesla magnets: about 25% market
- Ultra-high field
 - 7 tesla to 11.7 tesla magnets
 - Limited to few research clinics, about 70 units installed worldwide

Agenda

Introduction

- Requirements to MRI magnet
 - Safety
 - Patient comfort and compactness
 - Uniformity
 - Persistence
 - Stray field
- Electromagnetic design
- Structural design
- Cryogenic system
- Conductor
 - LTS
 - MgB₂ and HTS
- Conclusion

Requirements to MRI magnets

 \rightarrow

- Image Quality \rightarrow
- Total cost of ownership

Installation & service

Further customer needs \rightarrow

- Magnetic field strength (1.5 tesla or higher)
- Field uniformity in large volume (45-50 cm)
- Field stability
- Low initial cost
- Low operational costs (He and kWh)
- Light weight, compact size, smaller footprint
- Fast installation/adjustment
- Service at field
- Safety (5 ga line, standards)
- Reliable (maximum uptime)
- High throughput (maximize revenues)
- Compact/Accessible
- Patient friendly (wide/open)

Commercial magnet design is always a trade-off

Field uniformity and stability

- Design Uniformity: 10 parts-per-million (ppm) in 45~50 cm diameter volume
 - o Multiple-coil configuration
- Field decay:
 - Short-term decay: 1 ppb during sequence (EMI, vibration)
 - Long-term decay: less than 0.1 ppm/hour on average, less than 0.1% per year

Shielding

- Magnetic field outside of the scanning suite shall be less than 5 gauss (industry standard)
- Types of shielding
 - Active shielding: Use superconducting coils of opposite direction. Costeffective, light weight – standard in commercial MRI
 - Passive shielding
 - $\circ~$ Iron attached to cryostat
 - Wall shielding
- Typical 5-gauss line
 - Measured from the magnet center
 - 1.5 T magnets: ~2.5 m X 4 m (R X Z)
 - 3 T magnets: ~3 m X 5 m

Refrigeration

- In 2000s, zero-boil-off (ZBO), or better, *zerohelium loss* refrigeration became standard in commercial MRI
- ZBO technology uses cryocooler to recondense helium gas inside the cryostat → No need in helium refill
- Elimination of one thermal shield, more compact magnet design
- Disadvantages of ZBO:
 - o Higher refrigeration cost
 - Higher power consumption

	1980 s	1990s	2000-10s
Technology	Nitrogen	GM	ZBO
	shield	cryocooler	
LHe boil off,	0.4	0.1 → 0.03	Zero
cc/hr			
LHe refill	4 months	1 year $ ightarrow$	Typically, no
period		4 years	refill
LN refill	1-2 weeks	Not used	Not used
period			

Principal schematic of ZBO refrigeration

Agenda

- Introduction
- Requirements to MRI magnet
- Electromagnetic design
 - Coil configurations
 - Persistence
 - Quench protection
- Structural design
- Cryogenic system
- Conductor
- Conclusion

Components of MRI magnet

Unique in Superconducting MRI Magnets

- High field homogeneity
 - Multi-coil configuration
 - Precise coil positions
- Persistent operation
 - Superconducting joints
 - Superconducting switch
 - Passive quench protection, target no external discharge
- Minimized stray field
 - Shielding coils with reversed polarity
- Reliable operation at customer sites (hospitals)
- Price-driven: installation and life cycle

High-level Magnet Design Process

B0 field, fringe field, field homogeneity, magnet size & cost

Number of coils, wire-specs, coil peak field, operating current, magnet stack-up & coil envelope

Ic (B), wire size, insulation type, filament, RRR, piece length

Define coils size, turns/layers, spacing, lo/lc ratio

Quench protection analysis Field sensitivity analysis and shimming design study

Updated coil geometry/layout, field drift calculation, moving metal compensation circuit, leads/switch design, coil cold-to-warm dimensions.

Coil and former stress analysis, thermal analysis, cryostat design

Coil/former assembly process, leads/switch/joint processes, instrumentation, test plan

From long to short magnets standard multi-coil configuration for 1.5 T magnets

Length	180 cm	145 cm	133 cm	130 cm
FOV	33 cm	45 cm	45 cm	45 cm
# coils	6	8	8	10
Вр	2.3	3.8	5.1	5.4
kAmp-km	4.8	4.6	4.8	5.3

- Assumption: All magnets have the same IR and OR, same current, conductor and stray field all typical for 1.5 T magnets
- Multi-coil configuration
 - Six-coil design: can not deliver uniformity
 - Short magnets: stray field
- Conductor volume is within +/-10% for the whole range of lengths
 - ... but its price depends on Bp and increases for short magnets

Shimming

Improve uniformity from 500~1000 ppm in magnet asbuilt to 10 ppm

- Passive shimming
 - Precisely-positioned pieces of iron in the warm bore. Improves overall uniformity (not individual harmonics)
 - Lowest cost option
 - o <u>Cons</u>: Temperature drift
- Active superconducting shimming.
 - Adjustable. Trade off convenience vs performance.
 - <u>Cons</u>: Higher cost. Interactions with magnet
- Resistive shims to improve uniformity in a sweet spot
 - Compensates effects of human body. Adjustable for individual patients
 - <u>Cons</u>: Low strength. Time-consuming shimming. Interactions with magnet.

Shimming is achieved by compensating different B field harmonics by shimming coils or passive iron shims.

Field Stability

Options:

- 1. Driven operation
 - Expensive driver, permanently installed
 - Lead losses
- 2. Persistent operation: average decay <0.1 ppm/hr
 - Typical MRI/NMR configuration
 - Lower cost. Better performance
 - Requires very low circuit resistance
 - Retractable leads
 - Risk: unstable SC components

Persistent magnet

Persistent Magnet Operation

$$B = B0 \left(1 - e^{-\frac{tR}{L}}\right)$$
$$L = 2E/I^{2}$$
$$Decay = \left(1 - e^{-\frac{3600RI^{2}}{2E}}\right)$$

$$\mathbf{R} < \frac{2 \ Decay * E}{3600 * I^2}$$

Decay in ppm/hr E is stored energy [MJ] / is magnet current [A] L is magnet inductance [A] R is magnet resistance [ohm]

Max circuit resistance

Typical parameters for 1.5 T whole-body MRI magnets

- Decay = 0.1 ppm/hr
- *E* = 3 MJ
- *I* = 500 Amp

→
$$\frac{\text{Total circuit:}}{R_c < 7E-10 \text{ ohm}}$$

Field decay mechanisms:

- Resistance of joints
- Decay in conductor

Superconducting Joints

US Pat. 4,894,906 (Yuchi Huang, 1990)

- Matrix etched off
- No twisting
- Filaments inserted in bimetallic tube
- Superconductor on ID of tube
- Tube crimped, filled with solder

Challenges (NbTi joints)

- Target resistance <10⁻¹¹ ohm per joint, lower for low-current magnets
- Even distribution of current in filaments
- Testing in production environment
- Minimize field on joints

US Pat. 8,315,680 (Le Feuvre & Simpkins, Siemens, 2012)

- For use in non-helium bath magnet
- Matrix material etched off
- Filaments twisted
- Wrapped around an insulated, cryogen tube
- Placed in cup with Wood's metal

Conductor Resistance

50% reduction of N-value: need to reduce I/Ic by 30%

Typical N-values

- Stable and predictable in LTS
- HTS:
 - o Depend on field and orientation
 - Manufacturing method
 - $\circ \quad \text{Significant variability} \\$

Material	N-value
NbTi	~50 @ 4 tesla >40 @ <7 tesla >30 above 7 tesla
MgB ₂	~30 at zero field ~20 above 0.5 tesla
HTS	~30 at zero field ~20 above 0.4 tesla

Superconducting Switch

Design Requirements

Maximize switch resistance and minimize joule heating

$$Q = \frac{V^2}{R_s} t$$

- Minimize inductance
- Fast ON-OFF and OFF-ON transitions
- No spontaneous quenches
- High-current operation

US Pat. 5,649,353 (L. Salasoo et al, 1997)

US Pat. 5,093,645 (B.Dorri et al, GE, 1992)

- Switch for conduction-cooled magnet
- Bifilar-winding, epoxy-impregnated

Quench Protection

What is quench?

Superconductor becomes resistive when it exceeds the (B, J, T) critical surface.

Consequence of a quench

- Out of MRI operation, down-time
- Loss of helium
- Risks of over-heating, over-voltage, over-stress
- Risk to magnet structures
- Stray magnetic field blooming
- Field homogeneity/re-shimming

NbTi critical surface

MRI quench protection:

- Passive detection: no external circuit
- Heaters:
 - Resistive: use magnet energy
 - Inductive heating (ancillary)
- Energy released inside cryostat

Quench protection includes:

- 1. Detection of quench occurs
- 2. Protection (heater activation)
- 3. All coils quench
- 4. Current decays

Quench Protection

• MIIT approach

$$\int_{T_o}^{T_{max}} \frac{C_p(T)}{\rho(T)} dT = \int_0^{t_o} J(t) 2 dt$$

• Need fast detection and heater activation and fast normal zone propagation

US Pat. 7,196,883 (M. Tsuchiya et al, Hitachi, 2007)

- Detection controlled by diode threshold voltage
- Extensive and fast heater activation
- Voltage clamping

Agenda

- Introduction
- Requirements to MRI magnet
- Electromagnetic design
- Structural design
- Cryogenic system
- Conductor
- Conclusion. Q&A

Magnet Support Structure

	Element	Function
1	Main coils	Create main homogeneous field
2	Bucking coils	Stray field control
3	Structure (coil form)	Support of inter-coil forces
4	Active shims (CC)	Manuf. tolerance compensation (lower orders)
5	Passive shims	Manuf. tolerance compensation
6	B0 coil	Moving metal compensation
7	Main switch	Persistent circuit (open during ramp)
8	Quench switch	Quench spreading between coils
9	CC switches	Enable current input in CC
10	Quench protection elements	Coils voltage and temperature control during quench
11	Helium vessel	Magnet operational environment
12	Thermal shield	Control of cold-mass thermal load
13	Vacuum vessel	Control of thermal load
14	Suspension	Mech. support of cold-mass & shield
15	Main leads	Current input in magnet
16	Shim lead	Current input in active shims (CC)
17	Instrumentation	Monitor main magnet parameters
18	Cold-head w/ re- condenser	Cryostat heat loads management with zero boil-off
19	Gradient interfaces	Mechanical support and acoustic IF

Coils supported by structures and suspension to vacuum vessel

Coil Support Structure

- Function
 - Supports coil during winding
 - Supports coil-coil interaction force
- Design Considerations
 - Strong structure support
 - Light weight
 - Low cost
- Material
 - Aluminum
 - Stainless steel
 - GFRP

Cold-mass Suspension

- Function
 - Suspend coil mass to vacuum vessel
 - For regular operation + transportation
 - Minimize heat leak to cold-mass
- Design Considerations
 - Strong
 - Low thermal conductivity
 - Small Cross-sectional area
 - Long length
- Material
 - GFRP
 - CFRP
 - Stainless steel
 - Titanium rods

Source: Zhang, et. al., IEEE Trans. Appl. Supercond., V25, #2, 2015

Agenda

- Introduction
- Requirements to MRI magnet
- Electromagnetic design
- Structural design
- Cryogenic system
- Conductor
- Conclusion. Q&A

Magnet Cryogenic System

H

		-
	Element	Function
1	Main coils	Create main homogeneous field
2	Bucking coils	Stray field control
3	Structure (coilform)	Support of intercoil forces
4	Active shims (CC)	Manuf. tolerance compensation (lower orders)
5	Passive shims	Manuf. tolerance compensation
6	B0 coil	Moving metal compensation
7	Main switch	Persistent circuit (open during ramp)
8	Quench switch	Quench spreading between coils
9	CC switches	Enable current input in CC
10	Quench protection elements	Coils voltage and temperature control during quench
11	Helium vessel	Magnet operational environment
12	Thermal shield	Control of cold-mass thermal load
13	Vacuum vessel	Control of thermal load
14	Suspension	Mech. support of coldmass & shield
15	Main leads	Current input in magnet
16	Shim lead	Current input in active shims (CC)
17	Instrumentation	Monitor main magnet parameters
18	Cold-head w/ re- condenser	Cryostat heat loads management with zero helium boil-off
10	Gradient interfaces	Mechanical support and acoustic IF

Helium vessel, thermal shield, vacuum vessel, and cryo-cooler Imagination at work Presentation to the School of Superconductivity

34

Magnet Cryostat

Primary Goal

- Reduce heat load to the cold-mass (liquid helium temperature)
- Reduce or eliminate LHe boil off

Three types of heat transfer

- Convection
- Conduction
- Radiation

Reduce heat load

- Convection \rightarrow vacuum
- Conduction → suspension w/ composite materials
- Radiation → thermal shield + Multi-layer-insulation (MLI)

Provides cooling

Cryo-cooler/cold-head

Cryostat keeps superconductors cool

Vacuum Vessel

- Function
 - Holds vacuum
 - Provides structural support
- Design Considerations
 - Strong
 - Low cost
- Material
 - Stainless steel
 - Aluminum
 - Steel
 - Composites

Thermal Shield

- Function
 - Blocks radiation heat
 - Provides thermal stationing
- Design Considerations
 - Operating temperature 40-60K
 - Connected to 1st stage of cold-head
 - Highly thermal conductive
- Material
 - Aluminum, various grades
 - Copper

Multilayer Insulation (MLI)

- Invented by Sir Dewar in 1900
- Developed in space industry in 1950's
- Thin plastic sheets (Mylar or Kapton)
- Metalized on both sides (Al or Ag)
- Separated by thin cloth meshes or scrim
- Loosely packed between vacuum vessel and thermal shield
- Blocks 90-95% of radiation heat
- Typical number of layers 20 40

Source: PRWeb

Cryo-cooler

Cooling power

- 1-1.5 W @ 4 K to cold-mass
- ~ 40W@ 40 K to thermal shield

Design Considerations

GM or Pulse-type coolers Cold-head orientation (PT for vertical only) Maintenance and service

Components of a cryo-cooler system

- Cold-head
- Compressor
- Flex helium lines

Agenda

- Introduction
- Requirements to MRI magnet
- Electromagnetic design
- Structural design
- Cryogenic system
- Conductor
 - LTS
 - MgB₂ and HTS
- Conclusion. Q&A

LTS conductor - NbTi

Why NbTi

- Mature, manufacturing-friendly, optimized for MRI
- Mechanically very strong
- Available in long lengths with guaranteed properties
- Lowest-cost superconducting material
- Con: low critical temperature T_c
 - Expensive refrigeration
 - Low stability: may quench

MRI industry uses

- 3,000 to 5,000 tons/yr (including copper)
- 65%-75% of all NbTi conductor (by weight)
- More than 50% of NbTi alloy

NbTi Conductor for MRI

Two conductor types

	Wire-in-channel (WIC)	Monolith
Shape	Rectangular	Round or rectangular
Size (typical)	>1 mm height	0.5 mm to 2 mm
Insulation (typical) Break-down voltage	Polyester braid, 150 um thick ~500 V	Formvar, 40 um thick >2,000 V
Cu : NbTi range	5 : 1 to 20 : 1	0.8 : 1 to 8 : 1
Current density in coils	Lower	Higher (1.5 – 2x)
Impact on magnet	 Heavier Dry-wound and/or VPI Low thermal conductivity: not fit for cryogen-free magnets 	 Lower weight, more compact Dry-wind or wet wind Fit for conduction-cooled magnets

Superconductors beyond NbTi

MgB₂, HTS advantages

- Higher-Tc materials may help to reduce installation and life-cycle cost:
 - Liquid-cryogen-free, quench-free system
 - Minimize on-site construction
- MgB₂ offers some potential for use in MRI

Trade-off conductor cost vs refrigeration cost

Challenges of MgB2 and HTS application in MRI

Design

- Persistent operation (low N-value, SC joint)
- Quench protection
- High price
- Low engineering current density
- Short piece lengths
- Manufacturing
 - Winding technology
 - SC Joints
 - Defect detection
 - Conductor breakage
 - Magnet yield

Conclusions

- Commercial MRI magnets have reached maturity
 - Efficient, well-integrated magnet design
 - Still, there are opportunities for improvement and growth
- Superconducting MRI scanners
 - The largest commercial application of superconductivity
 - The highest performance
 - Competitive life-cycle cost
- NbTi is the conductor of choice for commercial MRI magnets

Thank you

Email: anbo.wu3@ge.com

